Exploring compositional and mesostructural effects of Mn-doped Co_3O_4 spinel catalysts on the catalytic 2-propanol oxidation

<u>J. P. Fandré¹</u>, <u>S. Arnold²</u>, N. Cosanne², H. Scheele², A. Rabe³, E. Budiyanto¹, S. Najafishitari², H. Tüysüz¹, M. Behrens²

¹Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
²Institute for Inorganic Chemistry, Christian-Albrecht University of Kiel, 24118 Kiel, Germany
³Faculty of Physics, University of Duisburg-Essen, 45141 Essen, Germany

E-Mail presenting author: sarnold@ac.uni-kiel.de, fandre@kofo.mpg.de

The influence of Mn incorporation into three $Co_{3-x}Mn_xO_4$ series with unique morphologies and its influence on the electronic structure and catalytic activity was investigated. Two catalyst synthesis approaches were employed namely the crystalline precursor decomposition approach^[1] and the hard-templating method^[2]. Single-phase $Co_{3-x}Mn_xO_4$ catalysts with platelet morphologies (Fig. 1; left) were synthesized via pH- and temperature-controlled co-precipitation of hydroxide precursors and subsequent thermal decomposition. Catalysts with spherical morphologies (Fig. 1; middle) were prepared by applying the same approach using hydroxycarbonate precursors. In addition, phase-pure $Co_{3-x}Mn_xO_4$ nanowires (Fig. 1; right) were prepared by nanocasting route using SBA-15 silica as a template. When performing nitrogen physisorption, all three sample series showed increasing surface areas with increasing Mn content, with the nanowires achieving the highest surface areas of 130 m²/g among the series.

Figure 1: SEM images of the different $Co_{3-x}Mn_xO_4$ spinel catalysts. Platelets (left), spherical particles (middle) and nanowires (right).

The catalytic activity and selectivity of these catalysts were then measured in gasphase 2-propanol oxidation. Preliminary results have already shown promising catalytic activity trends in the dependency of Mn content and morphology.

A. Rabe *et al., Chem. Eur. J*, 2021, **27**, 17039, 10.1002/chem.202102400.
X. Deng *et al., Chem. Mater.*, 2017, **29**, 41, 10.1021/acs.chemmater.6b02645.