Systematic Synthesis and Catalytic Performance Tests of Defined Noble Metal Species on Powder Support

<u>N. Da Roit¹</u>, <u>J. Czechowsky²</u>, O. Bettini⁴, C. Schmitt¹, A.R. Lakshmi Nilayam³, C.B. Maliakkal³, M. Neumaier³, C. Kübel³, M. Kappes³, S. Gross⁴, M. Casapu², S. Behrens¹

¹Institute of Catalysis Research and Technology, ²Institute of Chemical Technology and Polymer Chemistry, ³Institute of Nanotechnology Karlsruhe Institute of Technology, Karlsruhe, Germany; ⁴Department of Chemical Sciences, University of Padova, Padova, Italy

E-Mail presenting author: nicola.roit@kit.edu, joachim.czechowsky@kit.edu

Supported noble metal catalysts are complex systems whose performance depends on various material parameters and synergistic effects [1]. Herein, the influence of Pt nanoparticles (NPs) size and the effect of anisotropic CeO_2 support on CO oxidation are addressed. Furthermore, the stability and catalytic performance of bimetallic Pd-Pt catalysts on CeO_2 supports for emission control applications are reported visualizing the role of the Pt-Pd interaction.

The results obtained in our studies indicate a high impact of the surface noble metal concentration (SNMC) and surface defects on the stability of Pt₁₇ clusters on anisotropic CeO₂ supports and, consequently, on the low temperature activity for CO oxidation. Similarly, for bimetallic Pt-Pd catalysts a variation in the catalytic performance was noticed depending on the initial Pt-Pd alloying degree and support morphology. Upon applying a pre-reductive treatment, the impact of CeO₂ support was noticed especially on the long-term stability of the mono and bimetallic catalysts.

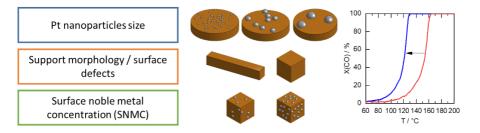


Figure 1: Investigation of the influence CeO₂ morphology Pt based catalysts for CO oxidation.

[1] F. Maurer et al., ACS Catal. 2022, 12, 2473.