Pt-CeO₂ Nanosponges - Synthesis and Catalytic Properties

<u>S. Falkner¹</u>, C. B. Maliakkal², M. Liebertseder¹, J. Czechowsky³, M. Casapu³, J.-D. Grunwaldt³, C. Kübel²*, C. Feldmann¹*

¹Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany ²Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany ³Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany

E-Mail presenting author: Simon.Falkner@kit.edu

Highly porous Pt-CeO₂ nanosponges (1 wt-% Pt) are realized by thermal decomposition of a cerium-oxalate precursor at low temperature [1]. The non-porous cerium oxalate precursor is precipitated from an ethanol-water mixture and then decomposed to mesoporous CeO₂ nanosponges at 350 °C in air. The CeO₂ nanosponges exhibit a specific surface area of 113 m²/g and a pore volume of 0.08 cm³/g, mainly with mesopores (≥ 25 Å and ≤ 45 Å). These nanosponges are impregnated with Pt nanoparticles using Pt(ac)₂ in methanol and subsequent reduction by H₂, resulting in a uniform size distribution with Pt nanoparticles 1.8±0.4 nm in size. The catalytic properties of the CeO₂-Pt nanosponges are evaluated for CO oxidation (50-250 °C), formaldehyde oxidation (25-250 °C) and NH₃ oxidation (50-400 °C). A promising catalytic activity and mostly stable light-off/light-out temperatures are observed, indicating the suitability of CeO₂-Pt nanosponges as high-porosity catalyst material for several types of oxidation reactions.

Figure 1: Scheme of Pt-CeO₂ nanosponges; overview STEM images of Pt-CeO₂ nanosponges; detailed STEM image, and EDXS Pt element mapping.