Complementary probing the defect and chemical evolution of Co₃O₄

Wulyu Jiang¹, Timon Wagner², Takuma Sato³, Brian Wuille Bille³, Anna Rabe^{4,6}, Martina Rüscher², Joonbaek Jang², Thomas Götsch¹, Dana Krenz⁵, Sven Reichenberger⁵, Annette Trunschke¹, Axel Knop-Gericke^{1,3}, Olaf Rüdiger³, Alexander Schnegg³, Janis Timoshenko², Arno Bergmann², Heiko Wende⁶, Stephan Barcikowski⁵, Serena DeBeer³, Malte Behrens⁴, Beatriz Roldan Cuenya², Thomas Lunkenbein¹

E-Mail presenting author: lunkenbein@fhi-berlin.mpg.de

Cobalt oxides are active in a variety of catalytic applications. In an ideal Co_3O_4 spinel, all cobalt ions are located in tetrahedral and octahedral sites. In reality, defects account for the typical non-stoichiometry of spinels. ^{1,2} These defects are believed to play a crucial role in heterogeneous catalysis. Details, on how vacancies and interstitial ions affect the physicochemical properties and the catalytic performance are difficult to obtain as they are difficult to quantify.

Herein, we apply a multi-modal approach that combines results from titration, diffraction, spectroscopy and microscopy experiments to track the evolution of oxygen vacancies in cobalt oxide during the calcination process. In addition, we followed the changes in the geometric and electronic structures in the bulk and at the surface. Results from electrochemical oxygen evolution experiments suggest that the more defective material is more active. The comprehensive structural analysis obtained by the multi-modal line up allows us to establish more realistic defectactivity relationships.

In summary, this work not only provides a deep and comprehensive understanding of material defects but also proves that defect engineering can be an efficient and economical strategy for catalyst design.

- [1] Casas-Cabanas, M. et al. Chem. Mater. **2009**, 21 (9), 1939–1947. https://doi.org/10.1021/cm900328g.
- [2] Gawali, S. R. et al. Sci. Rep. **2018**, 8 (1), 1–12. https://doi.org/10.1038/s41598-017-18563-9

¹Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

²Department of Interface Science, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

³Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany ⁴Institute for Inorganic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

⁵Technical Chemistry I and Center for Nanointegration Duisburg-Essen(CENIDE), University of Duisburg-Essen, Essen, Germany

⁶Faculty of Physics and Center for Nanointegration Duisburg-Essen(CENIDE), University of Duisburg-Essen, Duisburg, Germany