Insights into the mechanism of simultaneous N_2O and NO abatement over iron-zeolites by modulated excitation spectroscopy

F. Buttignol^{1,2}, D. Cano-Blanco^{1,2}, D. Ferri¹, <u>O. Kröcher^{1,2}</u>

¹ PSI Center for Energy and Environmental Sciences, Paul Scherrer Institut, 5232 Villigen, Switzerland ² Institute for Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne

(EPFL), 1015 Lausanne, Switzerland

oliver.kroecher@psi.ch

Nitrous oxide (N_2O) and nitric oxide (NO) are air pollutions that strongly affect human health and the environment. Scientific research on the abatement of both exhaust gas components has experienced a tremendous interest due to industrial processes and the forthcoming advent of ammonia-fueled ship engines, which will result in increasing emissions of these pollutants. Iron-exchanged zeolites proved to be suitable for either the individual abatement of N₂O and NO or the combined selective catalytic reduction (SCR) of N₂O and NO by NH₃ (N₂O-NO-SCR).^[1] For the identification and monitoring of the redox processes and dynamics of adsorbed species on iron-zeolites in these processes, we combined catalytic experiments with transient spectroscopic methods using the modulated excitation (ME) approach^[2]</sup> (ME-XAS, ME-EPR, ME-DRUV, ME-DRIFTS). The application of these methods allowed to develop a mechanistic understanding of the N₂O decomposition reaction over iron-zeolites and embed it into a comprehensive understanding of N₂O-NO-SCR chemistry: i) N₂O is activated on square planar isolated Fe_{β}^{2+} sites in form of Fe_{β}^{3+} -OH, ii) Fe_{β}^{2+} -NO species drives utilization of Fe_{β}^{3+} -OH, promoting iii) the Fe_{β}^{3+} -OH/ Fe_{B}^{2+} redox transition and the oxidative activation of Fe_{B}^{2+} -NO to Fe_{B}^{3+} -HONO. Finally, iv) Fe_{B}^{3+} -HONO is reduced by reactive NH_{3,BAS} producing N₂ and water through NH₄NO₂ and closing the catalytic cycle.^[3]

[1] F. Buttignol et al., Catal. Sci. Technol. 2022, **12**, 7308, DOI: 10.1039/d2cy01486f.

[2] V. Marchionni *et al.*, Anal. Chem. 2017, **89**, 5801-5809, DOI:

10.1021/acs.analchem.6b04939.

[3] F. Buttignol et al., Nat. Catal. 2024, accepted.